Search metadata

Metadata provide information about the identification, the extent,
the quality, the spatial and temporal schema, spatial reference,
and distribution of digital geographic data.
to

An Integrated Decision Support Toolbox (DST) for the Management of Mountain Protected Areas

New tools and methodologies are required in systemic planning and management of mountain protected areas. Among others we propose here a decision support toolbox (DST) conceived as an integrated collection of both soft and hard system methodologies, consisting of participatory and computer-based modules to provide a set of integrated, self-contained tools and approaches to support decision-making processes in the management of mountain protected areas. The Sagarmatha National Park and Buffer Zone (SNPBZ) in Nepal was taken as a pilot case. A number of participatory exercises such as participatory 3-dimensional modeling, scenario planning, and qualitative modeling were carried out to understand social-ecological processes and generate a systemic view over space and time. The qualitative models were then converted into computer-based system dynamics models. The design and development of DST software were carried out with an incremental and modular approach. This process involved stakeholder analysis and decision-making processes through a series of consultations. The software was developed with the main modules including scenario analysis, spatial analysis, and knowledge base. The scenario analysis module runs system dynamics models built in Simile software and provides functions to link them with spatial data for model inputs and outputs. The spatial analysis module provides the basic geographic information system functions to explore, edit, analyze, and visualize spatial information. The knowledge base module was developed as a metadata management system for different categories of information such as spatial data, bibliography, research data, and models. The development of DST software, especially system dynamics modeling and its linkage with spatial components, provided an important methodological approach for spatial and temporal integration. Furthermore, training and interactions with park managers and concerned stakeholders showed that DST is a useful platform for integrating data and information and better understanding ecosystem behavior as a basis for management decisions.

Metadata

Methodologies and Tools for the Management of Mountain Protected Areas: Mount Everest (Nepal, China) and K2 (Pakistan) Regions

Special Issue: Methodologies and Tools for the Management of Mountain Protected Areas: Mount Everest (Nepal, China) and K2 (Pakistan) Regions.

Metadata

Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan

Baltoro glacier in the Karakoram, Pakistan, is one of the world’s largest valley glaciers. It drains an area of about 1500km2 and is >60km long. In 2004 an Italian/German expedition carried out a glaciological field program on the ablation zone of the glacier, focusing on the ablation conditions and the dynamic state of the glacier. As Baltoro glacier is a debris-covered glacier, ice ablation also depends on the debris properties. Stake measurements of ice ablation and debris cover in combination with meteorological data from automatic weather stations close by have been used to determine the local melt conditions. Results from these calculations have been combined with an analysis of different classes of surface cover and information about precipitation, using remote-sensing techniques, in order to calculate mass fluxes for the upper part of Baltoro glacier. The dynamic state of the glacier has been investigated by GPS-based surface velocity measurements along the stake network. A comparison of these short-term measurements during the melt season with surface velocities computed from feature tracking of satellite images shows a high seasonal variability of the ice motion. We have shown that this variability is up to 100% of the annual mean velocity. On the basis of these investigations, the mass fluxes at the Concordia cross-section have been quantified. This approach can now be used together with the ablation calculations to reconstruct the variability of glacier extent and volume in the past using available climate data from the central Karakoram. From the comparison of historical measurements and photographs it is shown that the snout of Baltoro glacier is oscillating back and forth a couple of hundred metres. Otherwise it seems not to react with the same magnitude as other glaciers to the climatic change. Elevation changes at Concordia are a few tens of metres at the most

Metadata

Supplemental material for “Experience with a hard and soft participatory modeling framework for social-ecological system management in Mt Everest (Nepal) and K2 (Pakistan) protected areas”

High mountains have sensitive social-ecological systems (SESs) characterized by fragility, complexity, and marginality. The local economies of these environments mainly rely on primary production, tourism, and leisure activities; thus human–ecosystem interactions are intricately linked. Many authors stress that this strict relationship must be assisted with a participatory approach involving interested stakeholders in the conceptualization, specification, and synthesis of knowledge and experience into useable information for the express purpose of addressing a problem complex. This paper presents experience garnered with a participatory modeling framework combining hard and soft methodology in 2 case studies: the Sagarmatha National Park and Buffer Zone (Nepal) and the Central Karakoram National Park (Pakistan). The modeling framework was developed based on local stakeholders' demands and needs; it consists of 5 modules, briefly presented here along with their conceptual background. In developing the framework, particular emphasis was given to considering the needs of decision-makers at the local level, rather than simply providing technical solutions to abstract problems. From the development of this modeling process, a need emerged to structure a management-oriented research module in order to generate management knowledge that is both stakeholder-relevant and evidence-based. The application of the framework in the 2 cases studies showed that the modeling can trigger valuable discussion among stakeholders as well as guidance for management-oriented research and feedback loops ensuring validation of knowledge. In addition, the resulting scenarios can help decision-makers in defining pathways for sustainable development in mountain areas, where people's livelihoods are closely dependent on ecosystems. The framework was developed in such a way that it can be replicated in other mountain areas with similar challenges.

Metadata

Experience with a Hard and Soft Participatory Modeling Framework for Social-Ecological System Management in Mt Everest (Nepal) and K2 (Pakistan) Protected Areas

High mountains have sensitive social-ecological systems (SESs) characterized by fragility, complexity, and marginality. The local economies of these environments mainly rely on primary production, tourism, and leisure activities; thus human–ecosystem interactions are intricately linked. Many authors stress that this strict relationship must be assisted with a participatory approach involving interested stakeholders in the conceptualization, specification, and synthesis of knowledge and experience into useable information for the express purpose of addressing a problem complex. This paper presents experience garnered with a participatory modeling framework combining hard and soft methodology in 2 case studies: the Sagarmatha National Park and Buffer Zone (Nepal) and the Central Karakoram National Park (Pakistan). The modeling framework was developed based on local stakeholders' demands and needs; it consists of 5 modules, briefly presented here along with their conceptual background. In developing the framework, particular emphasis was given to considering the needs of decision-makers at the local level, rather than simply providing technical solutions to abstract problems. From the development of this modeling process, a need emerged to structure a management-oriented research module in order to generate management knowledge that is both stakeholder-relevant and evidence-based. The application of the framework in the 2 cases studies showed that the modeling can trigger valuable discussion among stakeholders as well as guidance for management-oriented research and feedback loops ensuring validation of knowledge. In addition, the resulting scenarios can help decision-makers in defining pathways for sustainable development in mountain areas, where people's livelihoods are closely dependent on ecosystems. The framework was developed in such a way that it can be replicated in other mountain areas with similar challenges.

Metadata

Verification of numerical model forecasts of precipitation and satellite-derived rainfall estimates over the Indian region: monsoon 2004

This work describes the preliminary results of a study aimed at: (1) assessing the ability of a general circulation model routinely run at the Epson Meteo Centre (CEM) in predicting daily rainfall; (2) evaluating the performance of satellite-derived precipitation estimates (namely, NOAA CPC CMORPH) over the same domain and during the same period. The CPC daily rain gauge analysis is used as reference for validation. The study focused on the Indian Monsoon during summer 2004, and comparison with a similar analysis at the mid-latitudes is also shown.

Metadata

Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan

During the recent Italian expedition ‘K2 2004 – 50 years later’ (June–July 2004) on Baltoro glacier, Karakoram, Pakistan, glaciological field experiments were carried out on the debris-covered area of this high-elevation glacier. The aim was to investigate the ice ablation and its relations with debris thermal properties and meteorological conditions. Ablation measurements along the glacier up to about 5000m and within a dedicated test field were combined with meteorological data from two automatic weather stations located at Urdukas (4022ma.s.l.) and at K2 Base Camp (5033ma.s.l.). In addition, temperature measurements of the debris cover at different depth levels along the glacier allowed the calculation of debris surface temperature and of the debris thermal resistance (R). Using the air temperature, the local mean lapse rate (0.00758 K/m) and the measured ablation, the degree-day factors (K) at different locations on the glacier were calculated. The ice ablation rates were related to debris thickness and elevation. They are typically on the order of 4cm/ day during the observation period. However, it was found that the surface topography (slope, aspect) has an influence on the total ablation similar to that of the debris thickness. Thermal resistance of the debris cover and its distribution over the glacier were estimated. Finally, a best-guess estimate of the total meltwater production was calculated from available climate data.

Metadata

Study of high ozone concentrations in the troposphere associated with lee cyclogenesis during ALPEX

High values of ozone concentration were measured during one episode of cyclogenesis in the western Mediterranean as part of ALPEX (on April 25, 1982). The concentrations were found both in the mid-troposphere and at a station located on a mountaintop in the Apennines. It is shown that the ozone-rich air sampled in the troposphere originated in the lower stratosphere one day before, and had descended as a consequence of the cyclogenic episode. The interpretation of the other ozone concentration peak is more problematic, as conditions in the meteorological field of the observation posts were considered to be poorly defined.

Metadata

Number size distributions and seasonality of submicron particles in Europe 2008–2009

Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-\AA lesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.

Metadata

From Himalaya to Karakoram: the spreading of the project Ev-K2-CNR

The Pyramid International Laboratory-Observatory is the symbol of the Ev-K2 -CNR Project. The project actually began in 1987, when Prof. Ardito Desio, 90 years old at the time, enthusiastically launched a new geological and geodetic research campaign in the Himalayan area. However, it was only with the building of the Pyramid International Laboratory-Observatory, inaugurated by Prof. Desio himself in 1990, that the project acquired a unique ‘‘logistic base’’ for its scienti?c research. The laboratory, located at 5050 m a.s.l. in the Khumbu Valley, on the Nepali side of Mount Everest, is in fact the ?rst high-altitude scienti?c research center of its kind. It is self-sufficient in its energy supply and contains all common scienti?c instrumentation, making it a suitable place for studying climatic and environmental changes, medicine and human physiology in extreme conditions, geology, geodesy and seismic phenomena. Over time, a wealth of knowledge, initiatives and international relationships have been accumulated and continue to be added to by Ev-K 2 - CNR through research in the ?elds of medicine and physiology; environmental sciences, earth sciences, anthropological sciences and clean technologies. The Ev-K 2 - CNR has been able to play a strategic role in the framework of collaboration amongst institutions, governments and organizations for the exchange and transfer of experiences, technologies and scienti?c and cultural knowledge. The increasingly interdisciplinary approach to research by the team has also led to the development of integrated programs for promoting the socio-economic development of local populations and environmental safeguarding in the region, such as the international Partnership initiative created through the Italian government around Ev-K 2 -CNR’s expertise, or the regional Ev-K 2 -CNR Project ‘‘Stations at High Altitude for Research on the Environment in Asia’’ (SHARE-Asia), aimed at the establishment of a network of research and monitoring stations for the long-term study of evolutionary environmental processes in the Himalayan–Karakoram region, with a strong technology transfer and capacity-building component to the bene?t of local populations and research institutions.

Metadata