Search metadata

Metadata provide information about the identification, the extent,
the quality, the spatial and temporal schema, spatial reference,
and distribution of digital geographic data.
to

Geospatial Rainfall Modelling at Eastern Nepalese Highland from Ground Environmental Data

The study presents a geospatial knowledge transfer framework by accommodating precipitation maps for the Eastern Nepalese Highland (ENH) across an area of about 100,000 km2. For this remote area, precipitation–elevation relationships are not homogeneously distributed, but present a chaotic gradient of correlations at altitude ranges. This is mainly due to impervious orography, extreme climate, and data scarcity (most of the rain gauges in Himalaya are located at valley bottoms). Applying geostatistical models (e.g. multivariate geospatial approaches) is difficult in these zones. This makes the ENH an interesting test area where we obtained monthly precipitation spatial patterns for a 30-year period (1961–1990). The aim was to both capture orographic meso-a spatial regimen (~30 km) and local pattern variability (~10 km). Data from 58 FAO raingauges were used plus data from an atmospheric weather station (AWS Pyramid) operating at 5,050 m a.s.l., used to compensate the gap of precipitation pattern presents in the area surrounding the Mount Everest. In these complex orographically remote areas of the Himalayas, monsoon precipitation systems exhibit important topographical interactions and spatial correlations, depending on the scale at which the primary variable (e.g., precipitation) and co-variables (e.g., elevation) are recorded and analysed. Precipitations were assessed for months—May, July and September—representative of the monsoon season. For the rainiest month (July), cokriging indicated a range of precipitation values from ~100 mm over the Tibetan Plateau to ~500 mm in the southern part of Nepal, up to ~900 mm towards the pre-Himalayan range. For July, cokriging precipitation map also showed correspondence with the map of vegetation pattern, and therein lies the clue to using multivariate geostatistical models as flexible approaches for estimating precipitation spatial patterns in remote areas.

Metadata

GNSS Station at the Pyramid International Laboratory – Observatory (Khumbu Valley - Nepal)

In 2011, within the framework of the SHARE project a new GPS receiver Leica GRX 1200 + GNSS was installed on a hill near the Pyramid Laboratory. Coordinates: Latitude: 27°57'33.23 Longitude: 86°48'47.14 Elevation: 4994.59 (above the GRS84 Ellipsoid)

Metadata

Atmospheric measurements of the halogenated hydrocarbons involved in global change phenomena

Chlorofluorocarbons and their replacement compounds are anthropogenic compounds of great environmental concern. For this reason monitoring their atmospheric mixing ratios on a worldwide scale is recommended. An analytical methodology for the simultaneous determination of selected chlorofluorocarbons and their replacement compounds has recently been developed. This methodology was applied in the analysis of actual air samples collected in remote and semi-remote areas located in the Northern and Southern Hemispheres. The concentration levels measured in the air samples collected in the two hemispheres are reported.

Metadata

Sixth Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC)

Special Issue:Sixth Scientific Conference of the International Global Atmospheric Chemistry Project (IGAC) Bologna, Italy; 13–17 September 1999

Metadata

Analysis of glacial meltwater in Bagrot Valley, Karakoram, based on short term ablation and debris cover observations on Hinarche Glacier

People in the Karakoram use discharge from glaciers during summer for irrigation and other purposes. While the glacial meltwater supply during hot and dry periods will vary as a result of climate change, Karakoram glaciers so far have not shown a consistent reaction to climatic change, although climate scenarios indicate severe future impacts in the high-elevation regions of the Himalaya and Karakoram. Field measurements on Hinarche Glacier in Bagrot Valley are combined with remote sensing information and climate observations to investigate the meltwater production of the glacier and estimate the meltwater discharge in the valley. Special emphasis was placed on ice melt beneath supraglacial debris, which is the common process on the glacier tongues in the region. The calculated annual meltwater production of about 135 million m3 for Hinarche Glacier shows the order of magnitude for glacier runoff in such environments. Glacial meltwater production is about 300 million m3 per year for the entire valley under balanced conditions. This analysis serves as a basis for further investigations concerning temporal meltwater variability and potential water usage by the local population.

Metadata

Remote Sensing Application to The Knowledge Of Enviromental Dynamics For A Project Of Management Planning In Central Karakoram National Park,Pakistan

The aim of this contribution is to present the research activities which will be carried out in the frame of the Project “Institutional Consolidation for the Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush - Karakoram-Himalaya Mountain Complex”. The Project will be performed within the cooperation of four scientific partners: IUCN (International Union for the Conservation of Nature and Natural Resources), ICIMOD (International Centre for Integrated Mountain Development), Ev-K2-CNR and CESVI (NGO, Cooperazione e Sviluppo, onlus) with the involvement of international researchers. The local management will be provided in Nepal by the Sagarmatha National Park (SNP), in Pakistan by the Central Karakoram National Park (CNKP) and in Tibet Autonomous Region (China) by the Quomolongma Nature Preserve (QNP). This contribution will provide an overview about the research issues (on forests, biodiversity, glacier changes, livelihoods) mainly based on remote sensing technologies which could be successfully applied on CNKP. The need for integrating remote sensing data and field activities are presented as well. The applied image processing techniques (i.e. radiometric normalization, image geometric rectification and thematic classification) are introduced with an emphasis on the key role played by acquiring field data and evaluating the accuracy. The basis of this discussion is the creation of some base thematic maps realised mainly from remote sensing data.

Metadata

A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion

This paper presents an analysis of the recent tropospheric molecular hydrogen (H2) budget with a particular focus on soil uptake and European surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, then deposition velocity and surface emissions and finally, deposition velocity, biomass burning, anthropogenic and N2 fixation-related emissions were simultaneously inverted in several scenarios. These scenarios have focused on the sensibility of the soil uptake value to different spatio-temporal distributions. The range of variations of these diverse inversion sets generate an estimate of the uncertainty for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere) varies between ?8 and +8 Tg yr?1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on bottom-up and top-down estimations. Our estimate of global H2 soil uptake is ?59±9 Tg yr?1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions within the range of their respective uncertainties. Additional constraints, such as isotopic measurements would be needed to infer a more robust partition of H2 sources and sinks.

Metadata

Global change impacts on mountain lakes

The issue entitled "Global change impacts on mountain lakes” from “Hydrobiologia”.

Metadata

Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods

The most remote regions of the globe are home of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalayas are one of the most isolated and least explored wilderness areas in the world outside the Polar Regions and it is for this reason that the Tibetan Plateau is often referred to as the Third Pole. Since 1990, an annual limnological survey (including chemistry and biology) has been carried out at two lakes located in the Kumbhu Valley, Nepal, at 5200 and 5400m a.s.l., respectively. Lake water chemistry surveys reveal a persistent increase in the ionic content of the lake water, a trend which appears to be closely linked to increasing temperature. In this study, we also analysed lake sediment cores for historical changes in algal abundance and community composition to evaluate how long-term variations in primary producer communities corresponded to known regional variations in climate systems during the past 3500years. Paleolimnological results support the evidence that the strong variability observed in the chemical data drives the variability in lake production and in the composition of algal assemblages. These variabilities can be related to known features of local climate and the values recorded in the recent years compare well with those recorded during warm periods, such as around 2000 BP, and thus support the idea that this area of the Himalayan Range, influenced by the South Asia monsoon, is closely linked to Northern Hemisphere climate dynamics.

Metadata

High altitude lakes: limnology and paleolimnology

The most remote regions of globe represent some of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalaya is one of the most isolated regions in the world and least explored wildernesses outside the Polar Regions; and it is for this reason that the Tibetan Plateau is often referred to as the ‘Third Pole’. Limnological survey (including chemistry, biology and sediment core studies) of lakes located between ca. 4500 and 5500 m a.s.l. has been performed from 1992 in the Kumbhu Valley, Nepal. Lake water chemical surveys reveal a constant increase of the ionic content of the lake water probably related to glacier retreat. Modern phytoplankton data compared with previous data point to an increasing trend in lake productivity. Zooplankton, benthos and thechamoebians provide useful biogeographical information. Paleolimnological reconstructions show the potential use of these sites in providing proxy data of past climatic changes in high altitude regions. Data collected of persistent organic pollutants show that the studied sites receive input related to long-range transport pollution. The aims and rationale for the future development of the Ev-K2-CNR Limnological Information System is discussed.

Metadata