Search metadata

Metadata provide information about the identification, the extent,
the quality, the spatial and temporal schema, spatial reference,
and distribution of digital geographic data.
to

Liligo Glacier, Karakoram, Pakistan: a reconstruction of the recent history of a surge-type glacier

Liligo Glacier is a small glacier located in a transverse valley, which flows on the south side of Baltoro Glacier, Karakoram, Pakistan. Terminus variations of Liligo Glacier since 1892 were reconstructed using various methods and sources (historical documents, cartography, photographs, satellite images and field surveys). The glacier is characterized by two phases of strong advance (beginning and end of the 20th century), separated by at least half a century of retreat. The advance rates, together with some ice-surface features such as the heavily crevassed surface and terminus morphology, are considered to be indicative of a surge-type glacier.

Metadata

Liligo Glacier, Karakoram, Pakistan: a reconstruction of the recent history of a surge-type glacier

Liligo Glacier is a small glacier located in a transverse valley, which flows on the south side of Baltoro Glacier, Karakoram, Pakistan. Terminus variations of Liligo Glacier since 1892 were reconstructed using various methods and sources (historical documents, cartography, photographs, satellite images and field surveys). The glacier is characterized by two phases of strong advance (beginning and end of the 20th century), separated by at least half a century of retreat. The advance rates, together with some ice-surface features such as the heavily crevassed surface and terminus morphology, are considered to be indicative of a surge-type glacier.

Metadata

Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan

A distributed surface energy-balance study was performed to determine sub debris ablation across a large part of Baltoro glacier, a wide debris-covered glacier in the Karakoram range, Pakistan. The study area is ca 124km2. The study aimed primarily at analyzing the influence of debris thickness on the melt distribution. The spatial distribution of the physical and thermal characteristics of the debris was calculated from remote-sensing (ASTER image) and field data. Meteorological data from an automatic weather station at Urdukas (4022ma.s.l.), located adjacent to Baltoro glacier on a lateral moraine, were used to calculate the spatial distribution of energy available for melting during the period 1–15 July 2004. The model performance was evaluated by comparisons with field measurements for the same period. The model is reliable in predicting ablation over wide debris covered areas. It underestimates melt rates over highly crevassed areas and water ponds with a high variability of the debris thickness distribution in the vicinity, and over areas with very low debris thickness (<0.03 m). We also examined the spatial distribution of the energy-balance components (global radiation and surface temperature) over the study area. The results allow us to quantify, for the study period, a meltwater production of 0.058km3.

Metadata

The recent evolution of Liligo Glacier, Karakoram, Pakistan, and its present quiescent phase.

Liligo glacier, in the central eastern Karakoram, Pakistan, is a small, south-to-north-flowing glacier situated in a transverse valley on the left (south) side of Baltoro glacier. New processing of satellite imagery enables a better quantification of terminus oscillations over the past 30 years. From the beginning of the 1970s to the beginning of the 21st century, Liligo glacier advanced about 2 km (60 m a-1). The progress was characterized by a significant evolution of terminus morphology, similar to that observed on the same glacier during the advance event near the beginning of the 20th century, and to those of many other Karakoram glaciers. This suggests indications of a surge-type mechanism. Field observations performed in 2004 indicated there was probably no confluence at that time between Liligo and Baltoro glaciers and that a quiescent phase had started in the early years of the 21st century.

Metadata

Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan

During the recent Italian expedition ‘K2 2004 – 50 years later’ (June–July 2004) on Baltoro glacier, Karakoram, Pakistan, glaciological field experiments were carried out on the debris-covered area of this high-elevation glacier. The aim was to investigate the ice ablation and its relations with debris thermal properties and meteorological conditions. Ablation measurements along the glacier up to about 5000m and within a dedicated test field were combined with meteorological data from two automatic weather stations located at Urdukas (4022ma.s.l.) and at K2 Base Camp (5033ma.s.l.). In addition, temperature measurements of the debris cover at different depth levels along the glacier allowed the calculation of debris surface temperature and of the debris thermal resistance (R). Using the air temperature, the local mean lapse rate (0.00758 K/m) and the measured ablation, the degree-day factors (K) at different locations on the glacier were calculated. The ice ablation rates were related to debris thickness and elevation. They are typically on the order of 4cm/ day during the observation period. However, it was found that the surface topography (slope, aspect) has an influence on the total ablation similar to that of the debris thickness. Thermal resistance of the debris cover and its distribution over the glacier were estimated. Finally, a best-guess estimate of the total meltwater production was calculated from available climate data.

Metadata

The recent evolution of Liligo glacier, Karakoram, Pakistan,and its present quiescent phase

Liligo glacier, in the central eastern Karakoram, Pakistan, is a small, south-to north-flowing glacier situated in a transverse valley on the left (south) side of Baltoro glacier. New processing of satellite imagery enables a better quantification of terminus oscillations over the past 30 years. From the beginning of the 1970s to the beginning of the 21st century, Liligo glacier advanced about 2km (60ma–1). The progress was characterized by a significant evolution of terminus morphology, similar to that observed on the same glacier during the advance event near the beginning of the 20th century, and to those of many other Karakoram glaciers. This suggests indications of a surge-type mechanism. Field observations performed in 2004 indicated there was probably no confluence at that time between Liligo and Baltoro glaciers and that a quiescent phase had started in the early years of the 21st century.

Metadata

Ice velocity and climate variations for Baltoro Glacier, Pakistan

The recent dynamic behaviour of Karakoram glaciers is expected to differ from that shown by glaciers in the central and eastern Himalaya because of regional variations in precipitation and temperature trends. However, there are insufficient quantitative data to support or confute such hypotheses. We present velocity data covering the period 1993 2008 for Baltoro Glacier, one of the longest glaciers in the Karakoram. Velocity measurements were made using cross-correlation feature tracking applied to European Remote-sensing Satellite (ERS-1 and -2) and Envisat advanced synthetic aperture radar (ASAR) data, supplemented by differential global positioning system (DGPS) measurements. We find a gradual acceleration of the glacier during the early 2000s, in particular during winter months. Multi-seasonal data reveal a large difference between summer and winter flow characteristics, but only in the upper ablation zone. Summer 2005 was a particularly dynamic period following from the heavy winter snowfall of 2004, indicating the importance of basal meltwater availability for glacier flow. Transverse velocity profiles indicate that Baltoro Glacier undergoes ‘block’ flow across much of the upper ablation zone during the summer, which we interpret as evidence of widespread basal sliding. The DGPS data confirm the rapid increase in flow detected during 2005. Modelled climatic data reveal decreasing summer temperatures and increasing precipitation over the study period, helping to explain the observed dynamic variations and their differences from glaciers elsewhere in the Himalaya.

Metadata

Analysis of Glacial Meltwater in Bagrot Based on Short-term Ablation and Debris Cover Observations on Hinarche Glacier

People in the Karakoram use discharge from glaciers during summer for irrigation and other purposes. While the glacial meltwater supply during hot and dry periods will vary as a result of climate change, Karakoram glaciers so far have not shown a consistent reaction to climatic change, although climate scenarios indicate severe future impacts in the high-elevation regions of the Himalaya and Karakoram. Field measurements on Hinarche Glacier in Bagrot Valley are combined with remote sensing information and climate observations to investigate the meltwater production of the glacier and estimate the meltwater discharge in the valley.Special emphasis was placed on ice melt beneath supraglacial debris, which is the common process on the glacier tongues in the region. The calculated annual meltwater production of about 135 million m3 for Hinarche Glacier shows the order of magnitude for glacier runoff in such environments. Glacial meltwater production is about 300 million m3 per year for the entire valley under balanced conditions. This analysis serves as a basis for further investigations concerning temporal meltwater variability and potential water usage by the local population.

Metadata

Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH)the “third polar ice cap” of our planet, glaciers play the role of “water towers” by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHAREPaprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050– 2059 from CCSM3 model, available within the IPCC’s panel, are then fed to the hydrological model. We adopt four different glaciers’ cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.

Metadata

Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan

During the recent Italian expedition ‘K2 2004 – 50 years later’ (June–July 2004) on Baltoro glacier, Karakoram, Pakistan, glaciological field experiments were carried out on the debris-covered area of this high-elevation glacier. The aim was to investigate the ice ablation and its relations with debris thermal properties and meteorological conditions. Ablation measurements along the glacier up to about 5000m and within a dedicated test field were combined with meteorological data from two automatic weather stations located at Urdukas (4022ma.s.l.) and at K2 Base Camp (5033ma.s.l.). In addition, temperature measurements of the debris cover at different depth levels along the glacier allowed the calculation of debris surface temperature and of the debris thermal resistance (R). Using the air temperature, the local mean lapse rate (0.00758 K/m) and the measured ablation, the degree-day factors (K) at different locations on the glacier were calculated. The ice ablation rates were related to debris thickness and elevation. They are typically on the order of 4cm/ day during the observation period. However, it was found that the surface topography (slope, aspect) has an influence on the total ablation similar to that of the debris thickness. Thermal resistance of the debris cover and its distribution over the glacier were estimated. Finally, a best-guess estimate of the total meltwater production was calculated from available climate data.

Metadata