Search metadata

Metadata provide information about the identification, the extent,
the quality, the spatial and temporal schema, spatial reference,
and distribution of digital geographic data.
to

SHARE Lakes - Lake Pyramid Superior (LPS)

"Mountain lakes of high altitude (Himalaya)" in Long Term Ecological Research Network-Italy Location: Lat 27 ° 57'54 "N Long 86 ° 48'40" E; Lake Area (m2): 5.7 103: Average depth(m): unknown; Maximum depth (m): 8.2; Altitude of the lake (m): 5213; Area Region: Himalayas, Khumbu Valley, Mount Everest.

Metadata

SHARE Lakes - Lake Pyramid Inferior (LPI)

"Mountain lakes of high altitude (Himalaya)" in Long Term Ecological Research Network-Italy Location: Lat 27 ° 57'45 "N Long 86 ° 48'56" E; Lake Area (m2): 16.7 103: Average Depth (m): unknown; Maximum depth (m): 8.2; Altitude of the lake (m asl): 5067; Region: Himalayas, Khumbu Valley, Mount Everest.,

Metadata

Solid Waste and Water Quality Management Models for Sagarmatha National Park and Buffer Zone, Nepal: Implementation of a Participatory Modeling Framework

The problem of supporting decision- and policy-makers in managing issues related to solid waste and water quality was addressed within the context of a participatory modeling framework in the Sagarmatha National Park and Buffer Zone in Nepal. We present the main findings of management-oriented research projects conducted within this framework, thus providing an overview of the current situation in the park regarding solid waste and water quality issues. We found that most of the solid waste generated in the park is composed of organic matter, paper, and minor reused waste that is mainly reused for cattle feeding and manure, while disposal of other nondegradable categories of collected waste (glass, metal, and plastic) is not properly managed. Particularly, burning or disposal in open dumps poses a great hazard to environmental, human, and animal health, as most dump sites situated close to water courses are prone to regular flooding during the rainy season, thereby directly contaminating river water. Pollutants and microbiological contamination in water bodies were found and anthropogenic activities and hazardous practices such as solid waste dump sites, open defecation, and poor conditions of existing septic tanks are suggested as possibly affecting water quality. Collection of these data on solid waste and water quality and compilation of management information on the targeted social-ecological system allowed us to develop consensus-building models to be used as management supporting tools. By implementing such models, we were able to simulate scenarios identifying and evaluating possible management solutions and interventions in the park. This work reveals insights into general dynamics that can support the quest for solutions to waste and water quality management problems in other protected areas and mountain landscapes where traditional livelihood and land use patterns are changing under the influence of a growing population, changing consumption patterns, and international tourism.

Metadata

SHARE Network of Hydrological Observations - Basha

Place: Basha Country: Pakistan Position latitude 3956201 N longitude 535705 E Drainage Area (km2): 1495 Icy Area (km2): 563 Altitude (m a.s.l.): 2460

Metadata

SHARE Network of Hydrological Observations - Nepal - Khumbu Valley

This network is composed by the point of observations in the Khumbu Valley: - Changri Nup Glacier - Pheriche

Metadata

High altitude lakes: limnology and paleolimnology

The most remote regions of globe represent some of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalaya is one of the most isolated regions in the world and least explored wildernesses outside the Polar Regions; and it is for this reason that the Tibetan Plateau is often referred to as the ‘Third Pole’. Limnological survey (including chemistry, biology and sediment core studies) of lakes located between ca. 4500 and 5500 m a.s.l. has been performed from 1992 in the Kumbhu Valley, Nepal. Lake water chemical surveys reveal a constant increase of the ionic content of the lake water probably related to glacier retreat. Modern phytoplankton data compared with previous data point to an increasing trend in lake productivity. Zooplankton, benthos and thechamoebians provide useful biogeographical information. Paleolimnological reconstructions show the potential use of these sites in providing proxy data of past climatic changes in high altitude regions. Data collected of persistent organic pollutants show that the studied sites receive input related to long-range transport pollution. The aims and rationale for the future development of the Ev-K2-CNR Limnological Information System is discussed.

Metadata

SHARE Network of Hydrological Observations - Biafo bridge 2012

Survey 2012 Date: 01 giugno 2012 Measure System: salt tracer Q (m3/s): 31,8 q (m3/(s km2)): 0,038

Metadata

SHARE Network of Hydrological Observations - Golabital

Place: Golabital, Biaho Lungpa Country: Pakistan Position: latitude 3948402 N longitude 587235 E Drainage Area (km2) :1749 Icy Area (km2): 411069 Altitude (m a.s.l.): 3098

Metadata

Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan

A distributed surface energy-balance study was performed to determine sub-debris ablation across a large part of Baltoro glacier, a wide debris-covered glacier in the Karakoram range, Pakistan. The study area is similar to 124 km(2). The study aimed primarily at analyzing the influence of debris thickness on the melt distribution. The spatial distribution of the physical and thermal characteristics of the debris was calculated from remote-sensing (ASTER image) and field data. Meteorological data from an automatic weather station at Urdukas (4022 m a.s.l.), located adjacent to Baltoro glacier on a lateral moraine, were used to calculate the spatial distribution of energy available for melting during the period 1-15 July 2004. The model performance was evaluated by comparisons with field measurements for the same period. The model is reliable in predicting ablation over wide debris-covered areas. It underestimates melt rates over highly crevassed areas and water ponds with a high variability of the debris thickness distribution in the vicinity, and over areas with very low debris thickness (<0.03 m). We also examined the spatial distribution of the energy-balance components (global radiation and surface temperature) over the study area. The results allow us to quantify, for the study period, a meltwater production of 0.058 km(3).

Metadata

Sedimentary evidence for recent increases in production in Tibetan plateau lakes

The Tibetan Plateau is a vast, elevated plateau in Central Asia with an average elevation of over 4,500 m and contains the world’s third largest store of ice. It occupies a climatic transition zone between the Asian monsoons and westerly airflow. As a result of this location, the region is sensitive to changes in climate on timescales of decades to millennia and longer. Long-term data are needed to evaluate climatic changes and their impact on ecosystems, but in areas as remote as the Tibetan Plateau, long-term instrumental records of environmental change are geographically sparse and monitoring has only been undertaken in recent times. Paleolimnological approach might be then one of the few means by which environmental variability can be ascertained at scales that allow comparison with contemporary monitoring data and future model projections. Therefore, a paleolimnological study was undertaken in eight different lakes sampled along a North–South transect across the Tibetan Plateau analysing geochemistry and algal pigment in order to assess longer term variability in the trophic condition of these systems and their potential to reconstruct changes in relation to recent climate evolution and possible human impacts. Chronologies for the last century were based on radiometric techniques (210Pb, 241Am and 137Cs). Results show that inorganic sediment dominates the composition of the cores used in this study. Organic carbon constitutes less than 5% d.w. in all the lake cores, except for Kemen Co core where concentrations up to 14% d.w., are observed. Corg:N ratios are generally in the order of 5–10, indicating that autochthonous algal production is the principal biological source of organic matter. Pigment preservation is generally good throughout the cores from all lakes as shown by the 430:410 nm ratio that is generally around 1.0 or higher. Six out of eight lakes show an increase in primary production in recent times. High pre-1800 AD pigment concentrations were detected only in Qinghai Lake. Since most of the lakes show a similar behaviour in the most recent section of the core, we interpret this as a response to climate and land-use changes that have increased autochthonous production throughout the Tibetan Plateau.

Metadata